FastNetMon

Saturday, 28 January 2023

Using Radvd to advertise IPv6 prefix for NAT64

Some time ago I published article about my own NAT64 gateway and configuration for it was quite far away from perfect: 


It even looks ugly as you need to keep this prefix in mind all the time. IPv6 offers very nice way to announce such prefix from our NAT64 box automatically using RA / Router Advertisement announces.

To make it possible we need to install package:

sudo apt-get install -y radvd

Then we need to create configuration for it in file /etc/radvd.conf :

interface end0 {

    MinRtrAdvInterval 3;

    MaxRtrAdvInterval 5;

    

    AdvSendAdvert on;

    AdvDefaultLifetime 0;

    route 64:ff9b::/96 {};

};

With such configuration radvd daemon will advertise that this prefix is accessible via machine's IPv6 address and all hosts in network will be able to use it.  

You will need to replace end0 by name of your external interface of NAT64 box.

Then start it and enable autostart:

sudo systemctl enable radvd

sudo systemctl start radvd

Finally, reboot or disable / enable network on client machine.

To debug it from client I recommend installing this tool:

sudo apt install -y radvdump

Then you need to run application with same name:

radvdump

And after few seconds you will see banner like this:

interface enp37s0f0

{

AdvSendAdvert on;

# Note: {Min,Max}RtrAdvInterval cannot be obtained with radvdump

AdvManagedFlag off;

AdvOtherConfigFlag off;

AdvReachableTime 0;

AdvRetransTimer 0;

AdvCurHopLimit 64;

AdvDefaultLifetime 0;

AdvHomeAgentFlag off;

AdvDefaultPreference medium;

AdvSourceLLAddress on;


route 64:ff9b::/96

{

AdvRoutePreference medium;

AdvRouteLifetime 15;

}; # End of route definition


}; # End of interface definition

In same time your Linux routing table will receive following entry:
sudo ip -6 route|grep ff9
64:ff9b::/96 via fe80::8832:73ff:fe02:edb6 dev enp37s0f0 proto ra metric 100 pref medium
So we have nice network path towards our NAT64 prefix. That's very convenient and works just fine.

As final step I can recommend checking that some IPv4 host is accessible via IPv6 NAT64 prefix.

I've decided to try GitHub:

ping6 64:ff9b::140.82.121.3 -c 3

PING 64:ff9b::140.82.121.3(64:ff9b::8c52:7903) 56 data bytes

64 bytes from 64:ff9b::8c52:7903: icmp_seq=1 ttl=246 time=14.6 ms

64 bytes from 64:ff9b::8c52:7903: icmp_seq=2 ttl=246 time=14.1 ms

64 bytes from 64:ff9b::8c52:7903: icmp_seq=3 ttl=246 time=14.2 ms


--- 64:ff9b::140.82.121.3 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 14.145/14.305/14.574/0.190 ms

This approach highlights great deal of flexibility in IPv6 protocol as it was very easy to add new prefix for our own purposes inside of our own network. 

I used following articles as basis for my research one and two

In following release after 2.19 radvd will receive update which will make specific statement for NAT64 prefix announcements. 

Saturday, 21 January 2023

Realtek 8153 based USB Ethernet adaptor on Debian Linux

I received my Lenovo Ethernet USB 3 adaptor based on Realtek 8153 and it identified well on my PC:

4021.908466] usb 1-1: USB disconnect, device number 6

[ 4021.908858] r8152 1-1:1.0 enx606d3cece3ed: Stop submitting intr, status -108

[ 4023.337656] usb 1-1: new high-speed USB device number 7 using xhci_hcd

[ 4024.434537] usb 1-1: New USB device found, idVendor=17ef, idProduct=720c, bcdDevice=30.00

[ 4024.434542] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=6

[ 4024.434543] usb 1-1: Product: Lenovo USB-C to LAN

[ 4024.434545] usb 1-1: Manufacturer: Lenovo

[ 4024.434545] usb 1-1: SerialNumber: ECE3ED000000

[ 4024.599450] usb 1-1: reset high-speed USB device number 7 using xhci_hcd

[ 4025.532652] r8152 1-1:1.0: load rtl8153a-3 v2 02/07/20 successfully

Sadly when I plugged it to my SBC RockPro64 I got following:

[ 4182.236792] usb 7-1: new high-speed USB device number 2 using xhci-hcd

[ 4182.386057] usb 7-1: New USB device found, idVendor=17ef, idProduct=720c, bcdDevice=30.00

[ 4182.386108] usb 7-1: New USB device strings: Mfr=1, Product=2, SerialNumber=6

[ 4182.386132] usb 7-1: Product: Lenovo USB-C to LAN

[ 4182.386152] usb 7-1: Manufacturer: Lenovo

[ 4182.386171] usb 7-1: SerialNumber: ECE3ED000000

[ 4182.440134] usbcore: registered new interface driver r8152

[ 4182.448147] usbcore: registered new interface driver cdc_ether

[ 4182.610609] usb 7-1: reset high-speed USB device number 2 using xhci-hcd

[ 4182.800168] r8152 7-1:1.0: firmware: failed to load rtl_nic/rtl8153a-3.fw (-2)

[ 4182.800868] firmware_class: See https://wiki.debian.org/Firmware for information about missing firmware

[ 4182.801738] r8152 7-1:1.0: firmware: failed to load rtl_nic/rtl8153a-3.fw (-2)

[ 4182.802385] r8152 7-1:1.0: Direct firmware load for rtl_nic/rtl8153a-3.fw failed with error -2

[ 4182.802401] r8152 7-1:1.0: unable to load firmware patch rtl_nic/rtl8153a-3.fw (-2)

[ 4182.839821] r8152 7-1:1.0 eth0: v1.12.13

[ 4182.880701] r8152 7-1:1.0 enx606d3cece3ed: renamed from eth0

To address it we need to add non-free repository to list of standard Ubuntu repos by adding non-free after main in /etc/apt/sources.list like this:

deb http://deb.debian.org/debian/ debian-code-name main non-free

And then install firmwares:

sudo apt-get update

sudo apt-get install -y firmware-realtek 

After that unplug USB adaptor and plug it again.

In my case I got following successful identification: 

[ 4778.769681] usb 7-1: new high-speed USB device number 4 using xhci-hcd

[ 4809.225536] usb 7-1: new high-speed USB device number 5 using xhci-hcd

[ 4809.374948] usb 7-1: New USB device found, idVendor=17ef, idProduct=720c, bcdDevice=30.00

[ 4809.375000] usb 7-1: New USB device strings: Mfr=1, Product=2, SerialNumber=6

[ 4809.375024] usb 7-1: Product: Lenovo USB-C to LAN

[ 4809.375044] usb 7-1: Manufacturer: Lenovo

[ 4809.375063] usb 7-1: SerialNumber: ECE3ED000000

[ 4809.570774] usb 7-1: reset high-speed USB device number 5 using xhci-hcd

[ 4809.738340] r8152 7-1:1.0: firmware: direct-loading firmware rtl_nic/rtl8153a-3.fw

[ 4809.760907] r8152 7-1:1.0: load rtl8153a-3 v2 02/07/20 successfully

[ 4809.790911] r8152 7-1:1.0 eth0: v1.12.13

[ 4809.831468] r8152 7-1:1.0 enx606d3cece3ed: renamed from eth0



Wednesday, 18 January 2023

spotifyd installation Ubuntu Linux 22.04

First of all, we need to install service which can play music from Spotify.

I'll use Spotifyd.

It's relatively easy to build as it uses Rust:

sudo apt install libasound2-dev libssl-dev pkg-config cargo
git clone https://github.com/Spotifyd/spotifyd.git
cd spotifyd
cargo build --release
Then you need to create basic configuration for it which includes login and plain text password. Create configuration folder:
mkdir ~/.config/spotifyd

Then open file with favourite editor:
vim ~/.config/spotifyd/spotifyd.conf

And then add following:
[global]
# Your Spotify account name.
username = "xxx@gmail.com"

# Your Spotify account password.
password = "xxx"

And finally launch daemon:

~/spotifyd/target/release/spotifyd --no-daemon 

Then you can see following log messages when you try to play music:

Loading config from "/home/xxx/.config/spotifyd/spotifyd.conf"

No proxy specified

Using software volume controller.

Connecting to AP "ap.spotify.com:443"

Authenticated as "xxx" !

Using Alsa sink with format: S16

Country: "GB"

Loading <Damascus> with Spotify URI <spotify:track:xxx>

<Damascus> (122880 ms) loaded

For production use I can recommend installing it to /opt:

sudo cp  ~/spotifyd/target/release/spotifyd  /opt/spotifyd

Then you will need to copy configuration file into system configuration path:

sudo cp ~/.config/spotifyd/spotifyd.conf /etc 

And creating systemd unit for it:

sudo vim /lib/systemd/system/spotifyd.service

With following content:

[Unit]

Description=A spotify playing daemon

Documentation=https://github.com/Spotifyd/spotifyd

Wants=sound.target

After=sound.target

Wants=network-online.target

After=network-online.target

[Service]

ExecStart=/opt/spotifyd --no-daemon

Restart=always

RestartSec=12

[Install]

WantedBy=default.target

And finally enable start on boot and start Spotifyd daemon:

sudo systemctl daemon-reload
sudo systemctl enable spotifyd
sudo systemctl start spotifyd

After that I can recommend checking that daemon started successfully using this command:

sudo systemctl status spotifyd

Example output:

spotifyd.service - A spotify playing daemon

     Loaded: loaded (/lib/systemd/system/spotifyd.service; enabled; preset: enabled)

     Active: active (running) since Wed 2023-01-18 14:13:11 GMT; 3s ago

       Docs: https://github.com/Spotifyd/spotifyd

   Main PID: 8963 (spotifyd)

      Tasks: 8 (limit: 4513)

     Memory: 976.0K

        CPU: 30ms

     CGroup: /system.slice/spotifyd.service

             └─8963 /opt/spotifyd --no-daemon


Jan 18 14:13:11 rockpro64 systemd[1]: Started A spotify playing daemon.

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Loading config from "/etc/spotifyd.conf"

Jan 18 14:13:11 rockpro64 spotifyd[8963]: No proxy specified

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Using software volume controller.

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Connecting to AP "ap.spotify.com:443"

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Authenticated as "xxx" !

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Country: "GB"

Jan 18 14:13:11 rockpro64 spotifyd[8963]: Using Alsa sink with format: S16

After that you can install Spotify console client. If you see any errors from client then you will need to click "d" and select spotifyd as output device. 

The great benefits of SpotifyD that it exposes itself via native Spotify protocol and you will see it in your app from phone or another computer:






 

Sunday, 15 January 2023

CircleCI hardware: January 2023

I tried to find information about hardware used by CircleCI in Docker and Machine modes but failed to get any up to date information.

I'll focus only on largest resource classes available on Free / OSS plan. 

So I decided to use my own instances to get it. Docker Large.


Internally:

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 85

model name : Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz

stepping : 4

microcode : 0x2006c0a

cpu MHz : 2999.998

cache size : 25344 KB

physical id : 0

siblings : 36

core id : 0

cpu cores : 18

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke

bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa itlb_multihit mmio_stale_data retbleed

bogomips : 5999.99

clflush size : 64

cache_alignment : 64

address sizes : 46 bits physical, 48 bits virtual

power management:

According to specs this runner allows you to use 4 CPU cores and 8G of memory.



I can clearly see that it can use all 4 CPU cores:


Physical machine is not very overloaded from my perspective but it's clearly busy:


 Let's talk about Machine executor "Linux Large" which is VM.

This one has same number of CPU cores but has more memory:

Considering same cost of Docker Large and Machine Large (20 credits) Machine option looks more attractive.

CPU:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 106
model name : Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
stepping : 6
microcode : 0xd000331
cpu MHz : 2899.970
cache size : 55296 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 27
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
bugs : spectre_v1 spectre_v2 spec_store_bypass swapgs mmio_stale_data eibrs_pbrsb
bogomips : 5799.94
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:
This machine is clearly 100% allocated only for us and I can see how my code uses all available CPU resources:



It's clearly AWS EC2 instance but we can try getting more information about instance type using metadata query:
curl http://169.254.169.254/latest/meta-data/
Let's get instance type:
curl http://169.254.169.254/latest/meta-data/instance-type
m6i.xlarge

And you can find information about it at AWS web site. 

Let's investigate ARM Large VMs.

It's clearly AWS too.

CPU information:

cat /proc/cpuinfo 

processor : 0

BogoMIPS : 243.75

Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs

CPU implementer : 0x41

CPU architecture: 8

CPU variant : 0x3

CPU part : 0xd0c

CPU revision : 1

lscpu:

Architecture:                    aarch64

CPU op-mode(s):                  32-bit, 64-bit

Byte Order:                      Little Endian

CPU(s):                          4

On-line CPU(s) list:             0-3

Thread(s) per core:              1

Core(s) per socket:              4

Socket(s):                       1

NUMA node(s):                    1

Vendor ID:                       ARM

Model:                           1

Model name:                      Neoverse-N1

Stepping:                        r3p1

BogoMIPS:                        243.75

L1d cache:                       256 KiB

L1i cache:                       256 KiB

L2 cache:                        4 MiB

L3 cache:                        32 MiB

NUMA node0 CPU(s):               0-3

Vulnerability Itlb multihit:     Not affected

Vulnerability L1tf:              Not affected

Vulnerability Mds:               Not affected

Vulnerability Meltdown:          Not affected

Vulnerability Mmio stale data:   Not affected

Vulnerability Retbleed:          Not affected

Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl

Vulnerability Spectre v1:        Mitigation; __user pointer sanitization

Vulnerability Spectre v2:        Mitigation; CSV2, BHB

Vulnerability Srbds:             Not affected

Vulnerability Tsx async abort:   Not affected

Flags:                           fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs

We can retrieve EC2 instance type using metadata query:
curl http://169.254.169.254/latest/meta-data/instance-type
m6g.xlarge

It's AWS Graviton2 based instance and you can find more details here

For full review we can try GCE enabled VM type which can be requested using Android Machine images. 

CPU:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU @ 2.30GHz
stepping : 0
microcode : 0xffffffff
cpu MHz : 2299.998
cache size : 46080 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid xsaveopt arat md_clear arch_capabilities
bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs
bogomips : 4599.99
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:
Then retrieve instance type using GCE metadata API:
curl "http://metadata.google.internal/computeMetadata/v1/instance/machine-type" -H "Metadata-Flavor: Google"; echo -e "\n"
projects/1027915545528/machineTypes/n1-standard-4

It's n1-standard-4 and you can find official documentation about it here

Data as table:

  • Machine Linux large: AWS EC2 m6i.xlarge
  • Machine Linux large / Android image:  GCE n1-standard-4
  • ARM Linux Large: AWS EC2 m6g.xlarge

I'll do performance comparisons between Docker and VMs in future posts. 

 

Wednesday, 11 January 2023

USB-3 Gigabit 1G Ethernet card

I'm playing with my SBC Rock64Pro and found myself limited by single Ethernet port.

So I decided to find decent Ethernet adapter with USB-3 support.

Fortunately, I found really nice blog which compares performance between Realtek RTL8153 based USB Ethernet adapters and ASIX AX88179 based ones.

Realtek one clearly wins as ASIX shows not very perfect performance and cannot reach 1G in many tests. 

Just for clarity RockPro64 uses RTL8211F based adaptor for onboard ethernet.